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Abstract

Rating systems are widely used for ranking players and teams, predicting match
outcomes, and matchmaking in various sports and games. However, new rating
system methods are often evaluated using only a few datasets, with variations
in the selected sports/games, leagues, and date ranges, leading to inconsistent
benchmarks that hinder comparison across research efforts. Esports, the highest
level of video game competition, has seen rapid growth over the past decade,
attracting large audiences and significant cash prizes. The extensive match data
available on fan sites and wikis makes esports data a valuable resource for rating
systems research. We introduce EsportsBench, a curated collection of esports
datasets spanning over 20 years and encompassing a diverse range of game genres
and competition formats. We conduct experiments benchmarking the predictive
performance of various rating systems and recommend methodologies for future
ratings systems research on esports data. EsportsBench is available at https:
//hf.co/datasets/EsportsBench/EsportsBench.

1 Introduction

In competitive games and sports, rating systems assign numerical values, to competitors representing
their underlying skill. These systems are fundamental for popular applications including prediction,
ranking, and matchmaking. Predicting the results of future matches is a common practice among
professional analysts, odds-setters, and fans. Ranked lists of competitors are often constructed either
as a part of an official league format, or by media and fans for entertainment. Ratings are also used
to ensure balanced match-ups either as seeding mechanisms, qualification criteria, or in the case of
video games, as a component of skill based match-making systems. All of these applications rely on
the underlying rating system providing accurate approximations of the true strengths of competitors,
motivating extensive research into the development of accurate and efficient rating systems.

Effective rating systems research involves running carefully designed experiments on datasets of
competitive matches. To facilitate the evaluation and development of rating systems, we introduce
EsportsBench, a suite of large and diverse datasets comprised of competitive esports data. To establish
a baseline for future comparisons, we conduct experiments evaluating several existing rating systems
using these new datasets and share our findings to guide future research.

2 Background

Much of the work in the field of rating systems stems from research centered around the rating
of chess players (Elo, 1961; 1967; 1978; Glickman, 1995a; Glickman and Jones, 1999). As the
field developed and rating systems were recognized as effective methods for ranking, prediction,
and matchmaking, they were applied to a wide variety of other games and sports including tennis
(Glickman, 1995b; Ingram, 2021; Hua et al., 2023), American football (Glickman and Stern, 1998;
Glickman, 2001) Soccer, (Fahrmeir and Tutz, 1994), hockey (Szczecinski and Tihon, 2023), and
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volleyball (Glickman et al., 2018). Several works have also included comparisons on data from video
games such as online Halo matches (Herbrich et al., 2006; Weng and Lin, 2011).

While it speaks to the efficacy of rating systems that they are widely used across different competitions,
the wide range of competition datasets has the unfortunate result that many methods are not compared
to each other on the same sports or games, and even when results on the same sport are reported, they
are often for different time ranges or leagues. This makes it difficult to compare rating systems, as
different experiments may reach opposing conclusions about the predictive performance of rating
systems when those differences may be attributable to the properties of their datasets.

Inspired by the widespread use of standardized datasets for model comparisons in other machine
learning subfields such as computer vision and natural language processing, we curate and process
esports match datasets in standardized formats. We then conduct baseline experiments using a wide
range of rating systems in order to provide a jumping off point for future rating systems research.
The EsportsBench datasets span broad time ranges with different distributions over those ranges
and differ substantially in size, outcome variance, competitor distribution, competition format, and
gameplay mechanics. We hope that the diversity of the datasets can help provide clarity into the
situations in which different rating systems perform optimally and inspire new methods informed by
that knowledge.

2.1 Notation and Setup

We define a match m as a tuple representing the meeting of two competitors, ca and cb at time t
and having outcome y. The competitor identifiers ca and cb are integers in the set {1...C} with C
being the total number of competitors. The outcome y ∈ {1, 0.5, 0} is defined with 1 representing a
win for ca, 0.5 a draw and 0 a loss. We use t ∈ {1...T} to represent the index of a rating period. A
rating period is a predefined length of time such as a day, week, month, or year, where all matches are
considered simultaneous, so if two matches occur during the same rating period, they would share
the same t. A dataset is an ordered set of N match tuples D = {(ti, ci,a, ci,b, yi)}Ni=1.

We consider rating systems parameterized by θ. In the simplest case of the Elo rating system, θ ∈ RC

is a vector of ratings, one for each competitor. However other rating systems may use other parameters
such as a representations of variance, volatility, running statistics, or higher dimensional vectors
encoding game dynamics.

A rating system implements two functions, predict and update.

• predict takes as input the competitors ci,a and ci,b, the time ti, and the parameters from
the previous rating period θt−1, and returns the predicted outcome p̂i of match mi. That is,
the predicted probability that ci,a will win.

p̂i = predict(ci,a, ci,b, ti,θt−1)

• update takes as input the set of matches Mt = {(ti, ci,a, ci,b, yi) | ti = t} occurring at
time t, and the previous parameters θt−1, and produces the updated parameters θt.

θt = update(Mt,θt−1)

The parameter fitting and evaluation takes place simultaneously in a single pass over the dataset. We
iterate one rating period at a time, first making predictions for each match in the period, then using
the full match information including outcomes to update the parameters.

This setup is referred to as “online” or “time dynamic” and contrasts with methods which fit ratings
to entire datasets at once as in Bradley and Terry (1952) or update ratings based on all previous data
as in Coulom (2008).

3 Related Work

3.1 Rating Systems Evaluation

In early rating systems research, newly introduced methods were sometimes evaluated based on the
agreement of their predictions with observed outcomes in chess (Elo, 1978), the ability of the systems
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to recover underlying parameters of synthetically generated data (Glickman and Jones, 1999), and
the degree to which ranked lists of competitors agreed with expert opinions (Glickman, 1999; 2001).

As the field has progressed, there has been a shift toward experiments which directly compare different
rating systems and measure which make more accurate predictions using quantifiable metrics on the
same datasets. Weng and Lin (2011) evaluated their methods on the same Halo dataset introduced by
Herbrich et al. (2006) and compared prediction error rates. Szczecinski and Tihon (2023) compare
their methods with Glicko and TrueSkill on synthetic data and with Elo on hockey data measuring
the log loss. Kovalchik (2016) used tennis data and compared Elo to other types of match prediction
methods such as point based models, regressions using player features, and bookmaker odds. The
most extensive comparisons performed to date were done by Duffield et al. (2024), who perform
comparisons of Elo, Glicko, TrueSkill, Simplified Kalman Filter, and others on chess, soccer and
hockey datasets also comparing using log loss.

3.2 Rating Systems and Esports

While some novel paired comparison research has been evaluated on esports data, such as the
evaluations done by Chen and Joachims (2016a;b); Bertrand et al. (2023) on StarCraft II data, and
the study by Bisberg and Cardona-Rivera (2019) on Elo hyperpameter tuning using Call of Duty data,
the majority of rating systems applications to esports are done using rating systems with the goal of
making accurate predictions on esports matches, rather than using esports data to gain understanding
about rating systems. There are numerous reports and projects in which rating systems like Elo,
Glicko, and TrueSkill are used as baselines or as features in more sophisticated machine learning
pipelines for esports prediction (Wahlroos, 2018; Pradhan and Abdourazakou, 2020; Dehpanah et al.,
2021; Xenopoulos et al., 2022; Edmond, 2023).

3.3 Public Natural Language Processing Benchmarks

We also take inspiration from the public benchmarks and leaderboards used in the field of natural
language processing. There are several benchmarks such superGLUE (Wang et al., 2019) and
BigBench (bench authors, 2023) which have been widely adopted, allowing for straightforward
comparisons across a large number of models. There is also a recent interest in using rating systems
such as Elo as evaluation metrics in NLP using human paired comparison judgements (Bai et al.,
2022; Boubdir et al., 2023; Chiang et al., 2024). We also learn from the weaknesses of public NLP
benchmarks where occasionally models overfit to the benchmarks making them poor indicators of
overall quality. Esports data for evaluation can avoid this issue as there is a steady stream of new and
unseen match data from new events which can be used for evaluation before any additional training
or hyperparameter tuning is done.

4 Dataset Details

We collect StarCraft II from aligulac1, a fan run website which records results, statistics, and their own
ratings of professional StarCraft II players. League of Legends data was collected from Leaguepedia2,
a wiki dedicated to the League of Legends professional scene. For all other games, we collect data
from Liquipedia3, a community of wikis covering many esports and administrated by Team Liquid,
a professional esports organization. On the aligulac website, there is a form where contributors
submit match results which are then made accessible by their API. The Leaguepedia and Liquipedia
wikis have processes in place where editors update tournament pages with results using templates
for matches and brackets. When the edits are made, the result data is automatically processed and
imported to a database which is accessible by an API. The Liquipedia and Leaguepedia wikis and all
data derived from them including EsportsBench are under a CC BY-SA 3.0 license.

1aligulac.com
2lol.fandom.com
3liquipedia.net
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Table 1: Dataset Statistics

Game First Year # Matches
Train (Test) # Competitors Draw Rate

StarCraft I 1998 82,028 9,954 12,287 0.0069
StarCraft II 2010 411,030 22,343 22,517 0.0048
WarCraft III 2002 105,764 9,897 11,034 0.0060
Super Smash Bros. Melee 2004 372,332 19,482 40,437 0
Super Smash Bros. Ultimate 2018 242,245 25,030 40,151 0
Tekken 2013 37,217 13,772 10,114 0
Street Fighter 2010 56,294 14,956 12,831 0
King of Fighters 2012 13,003 3,568 3,653 0
Guilty Gear 2015 14,290 5,383 5,717 0
Tetris 2018 4,226 1,401 616 0.0002
FIFA 2002 17,285 9,168 4,011 0.0651
Rocket League 2015 125,543 22,353 28,609 0.0030
Dota 2 2011 66,330 6,691 7,690 0.0777
League of Legends 2011 104,737 17,806 12,829 0.0261
Counter-Strike 2001 170,003 19,302 25,597 0.0177
Call of Duty 2009 13,271 2,352 2,920 0.0033
Halo 2004 11,862 3,560 3,206 0.0056
Overwatch 2016 25,159 5,675 7,870 0.0080
VALORANT 2020 46,546 15,999 15,906 0.0106
Rainbow Six: Siege 2016 48,782 12,603 11,695 0.0260

4.1 Processing

The data covers a wide range of competitions, from world championships played in front of live
crowds for millions of dollars, to weekly online tournaments and high school competitions. We opt to
retain as much of the data as possible, filtering out data only to preserve correctness and competitive
integrity. We filter out rows under the following conditions.

• The data has an empty or invalid entry in the date, competitor, or result fields.
• The two competitors have the same name/id. This can occur rarely in the cases of incorrectly

entered data or non-unique names.
• The format is not standard. For example the occasional two-on-two matches in games which

are usually one-on-one like StarCraft.
• The match is a show-match or another non-serious competition where the competitors’

motivations are for entertainment rather than winning.

4.2 Statistics

In some cases, we elect to combine multiple games in a series, for example Halo, Halo 2, etc, into
a single dataset. We do this in cases where there is a continuity in the community of professional
players and teams who switch to playing new versions when they are released. For the StarCraft
and Super Smash Bros. series, even when new games were released, substantial portions of the
communities preferred to continue to play the older versions leading to multiple parallel esports
scenes. In these cases we have individual datasets for different games in the series. Additional
information about genre, competition format and series is recorded in table 3.

All datasets include data from the first year in which there are at least 100 rows, until the end of
March 2024 with the final year of that range serving as the test set. Since the games cover different
time ranges, and the relative popularity of games changes over time, there are different train/test
ratios for each dataset. We choose this cutoff over splitting by percentage of rows or percentage of
rating periods because this scheme naturally allows for the future additions of new matches on a
quarterly basis with a 3 month shift to the test start range, while still allowing a standardized cutoff
for comparisons on the static dataset snapshots.
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Additional statistics about the distributions of matches per year, and distributions over player activity
levels are shown in Figures 1 and 2. A common pattern is a relatively small set of strong, popular, and
established players/teams have high activity levels and a very long tail of competitors who are seen
only a few times or once. This is especially prominent in games with large open bracket tournaments
where many entrants are eliminated in the first round and never appear again in the dataset. While the
scales are different, Figure 2 shows that all of the datasets demonstrate this power law behavior.

4.3 Limitations

4.3.1 Data Correctness

As the underlying source for these datasets is data entered in wikis largely by volunteer fans, it is
liable to standard data entry error patterns. The most common of these is typos in the entries of names,
dates, and results. Errors in the names lead to multiple entities in the datasets both corresponding
to the same real player or team. This leads to less accurate ratings and predictions as the full set of
results is not encapsulated in the ratings for either of the entities. As player and team strength can
vary over time, incorrect date information causes comparisons to be incorporated into the ratings at
times where their ratings poorly reflect their strength, and in the worst case, it can transmit future
result information back in time constituting a form of test set leakage. Errors in reported scores
and results are less common but can directly cause the ratings to be less accurate representations of
underlying strength.

Throughout the data curation process we detected many instances of these errors and contributed
several thousand edits to the underlying wiki pages correcting them. Nevertheless, it is a near certainty
that this category of error still persists in the published dataset and experimenters should be aware
of these patterns. It is also our hope that having more eyes on these datasets can help uncover more
errors allowing us and others to correct them in future releases.

4.3.2 Data Biases

There are biases present in these datasets due to the nature of their collection and entry. The primary
bias is representation bias. Esports competitions are often segmented by region or level. In regional
segmentation, regular competitions occur within a geographic region, with the top finishers from
each region qualifying for less frequent international or worldwide events. There are also leagues or
tournament systems that operate in a tiered structure with higher and lower levels of competition,
including periodic opportunities for promotion and relegation across levels.

With data being collected and entered by volunteers, there is more attention and effort spent on
competitions from the most popular regions and top levels. This results in the data from lower levels
and less popular regions, often economically disadvantaged areas, being less complete and accurate.
Missing and incorrect data can result in lower ratings for these competitors than their underlying skill
would warrant.

Experimenters should also be mindful of data entry positional bias. In games like League of Legends
and Dota 2, the competitor order can indicate faction or side, affecting gameplay. Other games feature
symmetric gameplay where competitor order is arbitrary. Often, data entry volunteers may place the
winner first by default. For instance, in Super Smash Bros. Melee, winners are listed first 58% of
the time, despite order being irrelevant. While the rating difference methods used in this work are
unaffected by order, other machine learning methods may incorrectly exploit this.

4.3.3 Data Granularity

There are two areas in which the coarse granularity of the data results in noise or loss of accuracy.
The first is that while the data sources often contain date and time information, the time portion
is not always reflective of reality. In particular it is often empty when editors only enter the date,
or sometimes the back-end systems add time information based on the bracket structure to ensure
that sorting results in a correct ordering, but with the times not being accurate, for example adding
one additional minute to the time for each round in a bracket. For this reason in the final datasets
we only include the date and not the time. Matches within the same date are not guaranteed to be
ordered so all experiments using these datasets should use rating periods of no shorter than 1 day,
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and make predictions independently for all matches within the same day to avoid possible leakage of
information about future events.

Each row contains an outcome value of 1, 0.5 or 0 representing win, draw, or loss for the first
competitor. However, rows may represent different formats. A common tournament format is for the
regular season or early rounds to be best of 1, 2, or 3 matches, while for the playoffs or final rounds
they switch to best of 5, or 7. Each row of the EsportsBench datasets represents a match, but may
represent different numbers of games depending on the format and score.

5 Experiments

5.1 Methodology and Metrics

The goal of our experiments is to perform initial, representative benchmarks of current rating systems
to gain insights into the best rating systems for esports data and the conditions in which they are
better or worse as well as to provide baselines upon which future works can compare and build.

5.2 Models

We consider a variety of rating systems for our experiments, including classic popular methods as
well as newer, highly general approaches. We implement the rating systems in python and publish
the implementations separately as the open source package riix. (Thorrez, 2024).

Elo. The baseline is the Elo rating system. It estimates the outcome probability using a logistic
function of the difference in competitor ratings, and updates the ratings based on the discrepancy
between the predicted score and the outcome value. Let θ be the vector of Elo ratings.

p̂i =
1

1 + exp−α(θa−θb)
,where α =

log(10)

400
(1)

θ′a = θa +K(yi − p̂i)

θ′b = θb −K(yi − p̂i)
(2)

K is a hyperparamter controlling the magnitude of the updates and can be viewed as the learning
rate when the update is seen as a gradient step Balduzzi et al. (2018); Szczecinski and Tihon (2023);
Morse (2019).

Glicko and Glicko2. The Glicko models (Glickman, 1999; 2001) are Bayesian extensions of Elo
which maintain mean and variance parameters for each competitor. In addition to the variance,
Glicko2 also tracks a volatility parameter for each competitor which controls how quickly their
variance can change with time and new results. The Glicko models also perform updates based on
aggregating all matches in the rating period. The rest of the rating systems are defined at a per-match
level.

TrueSkill. TrueSkill was introduced in order to extend Elo beyond the one-on-one setting. It is
also a Bayesian method and differs from Glicko in that it uses the Gaussian distribution rather than
the logistic, and it fits parameters using factor graphs. In the one-on-one case the update equations
simplify to a closed form.

Weng & Lin (W&L). The methods introduced in Weng and Lin (2011) Generalize and simplify
TrueSkill. There are two variants, one that uses the logistic distribution, called Bradley-Terry (BT)
and one that uses Gaussian distributions, called Thurstone-Mosteller (TM). The update equations are
closed form even in the team setting. These methods rely on Stein’s lemma in their approximation of
the gradient and hessian of the likelihood.

Multidimensional Elo (mElo). Balduzzi et al. (2018) introduced a multidimensional extension
of Elo which learns a Schur decomposition based on the game dynamics in order to model non-
transitive cycles such as rock-paper-scissors interactions. In addition to the ratings, mElo maintains a
k-dimensional vector for each competitor representing that competitor’s strategy. Both the ratings
and the strategy vectors are used when making predictions.
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Generalized Elo (GenElo). Ingram (2021) introduces GenElo as a more simple Bayesian extension
of Elo than Glicko, by assuming equal and constant variance for all competitors and only fits mean
parameters. It can be derived by taking a single Newton step optimizing the log posterior.

Simplified Kalman Filter (vSKF). Szczecinski and Tihon (2023) provide a very general formu-
lations of online rating systems building upon Kalman filter theory. These methods also come in
Bradley-Terry and Thurstone-Mosteller variants. We consider the vector covariance version as it
requires only one additional parameter per competitor in addition to the rating mean.

Variance Incorporated Elo (vElo). Hua et al. (2023) builds upon both Weng and Lin (2011) and
Ingram (2021) generalizing Elo, maintaining both mean and variance parameters, and using the
Laplace approximation for estimating the posterior. While the main focus is on incorporating tennis
surface covariates, they provide an outcome only variant as part of the derivation which we use.

5.3 Hyperparameter Optimization

The methods we consider have different numbers of hyperparameters and varying sensitivity to
changes in them. In order to perform a comparison which is fair to all methods, uses reasonably
strong hyperparameters, and is computationally feasible, we use uniform random sampling for the
hyperparameter values for all methods following Bergstra and Bengio (2012). We do this in two
stages, first we use very broad ranges for the hyperparameter values roughly an order of magnitude
lower and higher than values commonly used and suggested by the authors. Then we do a more
fine grained sweep centered around the best values identified in the first stage. If the broad sweep
identified x as the best value, the fine sweep samples in the range [0.75x, 1.25x]. We perform both
sweeps with 1000 samples, and separately for each dataset. The full set of hyperparameters, ranges,
and optimal values are listed in Table C. We run all experiments on a single machine with an AMD
Ryzen 9 3900x processor where running 1000 hyperparameter combinations for each rating system
and dataset takes about 5 hours.

We use 7 day rating periods for all experiments in this work. Our preliminary experiments using both
longer and shorter periods both resulted in numerical instability for some methods so we leave that
topic to future studies.

When performing the hyperparameter sweep we select the values which minimize the log loss.

ℓ = − 1

N

N∑
i=1

yi log(p̂i) + (1− yi) log(1− p̂i)

Recognize that while draws are rare in these datasets, this metric does handle them naturally. When
y = 0.5 it is equivalent to half the contribution of a win and and half of a loss. We choose the log
loss as the objective over accuracy as it is a more smooth function with more room to differentiate
between model scores from different models. Additionally many of the models are developed under
statistical frameworks for optimizing this log likelihood.

We split all datasets into train and test sets based on date, with the test set being the most recent year
of matches. Note that this does result in different train/test ratios for different datasets. We choose
hyperparameters using the log loss on the entire train set. We use this methodology over a three
way train, validation, and test split since in each run, matches are never trained on before they are
predicted, so the same dataset can perform the validation role. The code used for our experiments is
available at https://github.com/cthorrez/esports-bench.

5.4 Results

We present the test metrics using the best hyperparameters in table 2. Note that while all of the rating
systems examined can train on drawn matches, many like Elo cannot predict a match to be a draw.
For fairness we report accuracy computed on only decisive matches in the test set.

For the majority of games, Glicko and Glicko 2 are the best predictors both in accuracy and log loss
with a very small edge for Glicko 2. The slight advantage of Glicko 2 makes sense as it is almost
identical to Glicko with the only difference being allowing the increase in variance to vary across
competitors. Despite Glicko’s reputation and proven track record it is nevertheless surprising that it
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Table 2: Test log-loss and accuracy (excluding draws) of each rating system on each dataset. The
best rating system for each row is in bold.

Game Metrics Elo Glicko Glicko 2 TrueSkill W&L
BT

W&L
TM mElo vSKF

BT
vSKF
TM GenElo vElo

StarCraft I Accuracy 0.6001 0.6159 0.6164 0.6170 0.6213 0.6188 0.6044 0.5980 0.6178 0.6145 0.6136
Log Loss 0.6516 0.6414 0.6413 0.6421 0.6428 0.6434 0.6492 0.6515 0.6435 0.6451 0.6439

StarCraft II Accuracy 0.7977 0.8001 0.8013 0.7986 0.7904 0.7941 0.7983 0.7975 0.7979 0.7966 0.7990
Log Loss 0.4230 0.4142 0.4135 0.4183 0.4335 0.4274 0.4225 0.4229 0.4188 0.4209 0.4208

WarCraft III Accuracy 0.7690 0.7789 0.7789 0.7754 0.7633 0.7673 0.7689 0.7680 0.7730 0.7725 0.7698
Log Loss 0.4735 0.4621 0.4620 0.4675 0.4797 0.4745 0.4730 0.4736 0.4715 0.4724 0.4700

Smash
Melee

Accuracy 0.7250 0.7353 0.7353 0.7302 0.7223 0.7300 0.7252 0.7261 0.7287 0.7284 0.7310
Log Loss 0.5353 0.5231 0.5229 0.5297 0.5316 0.5292 0.5356 0.5326 0.5284 0.5315 0.5262

Smash
Ultimate

Accuracy 0.6772 0.6883 0.6881 0.6848 0.6842 0.6854 0.6773 0.6766 0.6811 0.6785 0.6842
Log Loss 0.5915 0.5828 0.5828 0.5853 0.5847 0.5845 0.5915 0.5888 0.5840 0.5857 0.5836

Tekken Accuracy 0.6426 0.6562 0.6562 0.6517 0.6487 0.6485 0.6412 0.6449 0.6507 0.6482 0.6490
Log Loss 0.6129 0.6060 0.6060 0.6080 0.6085 0.6074 0.6130 0.6121 0.6095 0.6112 0.6093

Street
Fighter

Accuracy 0.6260 0.6303 0.6302 0.6301 0.6240 0.6251 0.6265 0.6260 0.6291 0.6291 0.6247
Log Loss 0.6433 0.6404 0.6403 0.6418 0.6389 0.6406 0.6433 0.6412 0.6394 0.6428 0.6415

King of
Fighters

Accuracy 0.6393 0.6501 0.6501 0.6467 0.6355 0.6378 0.6389 0.6396 0.6436 0.6442 0.6378
Log Loss 0.6295 0.6236 0.6236 0.6246 0.6262 0.6271 0.6302 0.6272 0.6247 0.6264 0.6269

Guilty Gear Accuracy 0.6159 0.6166 0.6169 0.6164 0.6138 0.6162 0.6172 0.6174 0.6126 0.6131 0.6142
Log Loss 0.6387 0.6368 0.6368 0.6381 0.6383 0.6377 0.6388 0.6377 0.6395 0.6400 0.6377

Tetris Accuracy 0.6271 0.6278 0.6271 0.6406 0.6221 0.6242 0.6263 0.6292 0.6370 0.6242 0.6406
Log Loss 0.6078 0.6073 0.6074 0.6088 0.6178 0.6143 0.6102 0.6069 0.6101 0.6153 0.6073

FIFA Accuracy 0.5992 0.6041 0.6053 0.6024 0.6015 0.6017 0.6002 0.5996 0.6027 0.6019 0.5998
Log Loss 0.6624 0.6613 0.6613 0.6619 0.6617 0.6615 0.6625 0.6621 0.6629 0.6620 0.6631

Rocket
League

Accuracy 0.6314 0.6430 0.6432 0.6414 0.6359 0.6364 0.6312 0.6330 0.6400 0.6376 0.6354
Log Loss 0.6334 0.6261 0.6261 0.6272 0.6305 0.6311 0.6334 0.6312 0.6267 0.6276 0.6313

DotA 2 Accuracy 0.6191 0.6323 0.6323 0.6323 0.6156 0.6212 0.6185 0.6229 0.6305 0.6316 0.6241
Log Loss 0.6542 0.6447 0.6447 0.6465 0.6502 0.6506 0.6542 0.6512 0.6448 0.6453 0.6515

League of
Legends

Accuracy 0.6340 0.6355 0.6356 0.6336 0.6251 0.6275 0.6336 0.6341 0.6308 0.6311 0.6329
Log Loss 0.6371 0.6292 0.6292 0.6313 0.6401 0.6375 0.6372 0.6343 0.6299 0.6303 0.6346

Counter-Strike Accuracy 0.6290 0.6417 0.6418 0.6386 0.6315 0.6338 0.6289 0.6314 0.6404 0.6378 0.6338
Log Loss 0.6473 0.6375 0.6375 0.6391 0.6437 0.6432 0.6473 0.6447 0.6388 0.6394 0.6444

Call of Duty Accuracy 0.6361 0.6433 0.6442 0.6433 0.6399 0.6408 0.6374 0.6387 0.6408 0.6408 0.6412
Log Loss 0.6283 0.6197 0.6196 0.6215 0.6295 0.6242 0.6283 0.6268 0.6221 0.6228 0.6237

Halo Accuracy 0.6788 0.6941 0.6935 0.6921 0.6825 0.6896 0.6825 0.6842 0.6899 0.6870 0.6893
Log Loss 0.5882 0.5722 0.5722 0.5764 0.5820 0.5825 0.5879 0.5867 0.5776 0.5805 0.5817

Overwatch Accuracy 0.6266 0.6387 0.6390 0.6353 0.6199 0.6249 0.6263 0.6275 0.6336 0.6308 0.6314
Log Loss 0.6291 0.6177 0.6177 0.6207 0.6389 0.6341 0.6291 0.6234 0.6190 0.6197 0.6271

Valorant Accuracy 0.6177 0.6255 0.6256 0.6229 0.6182 0.6174 0.6181 0.6200 0.6221 0.6197 0.6170
Log Loss 0.6408 0.6369 0.6369 0.6385 0.6444 0.6415 0.6408 0.6385 0.6382 0.6391 0.6410

Rainbow Six Accuracy 0.6257 0.6370 0.6361 0.6371 0.6299 0.6317 0.6251 0.6265 0.6344 0.6300 0.6283
Log Loss 0.6372 0.6271 0.6272 0.6289 0.6330 0.6324 0.6372 0.6350 0.6299 0.6318 0.6333

Mean Accuracy 0.6509 0.6597 0.6599 0.6585 0.6513 0.6536 0.6513 0.6521 0.6568 0.6549 0.6549
Log Loss 0.6083 0.6005 0.6004 0.6028 0.6078 0.6062 0.6083 0.6064 0.6030 0.6045 0.6049

still outperforms many more recent rating systems. It is a good sign that all methods outperform the
Elo baseline though by varying degrees. Overall the methods which measure uncertainty give larger
gains than mElo which models intransitivity. With the scale and level of noise in these datasets, there
are less clear examples of rock-paper-scissors type cycles.

In these experiments the Glicko methods are the only ones which naturally make a single update
per competitor aggregating over all of the data in the rating period. For all other methods, despite
matches in the same rating period being considered simultaneous, the update equations are defined
at the per-match level so the matches within the rating period are treated as sequential for updating
(predictions are still made for all matches in the period before any updates are performed). This
difference may result in less stable updates for the non Glicko methods.

In terms of methodology, most other works make predictions at the match or even game level updating
after each data point, thus those comparisons with Glicko deprive Glicko of the impact of aggregative
updates. We note that when experimenting with different rating period sizes, shorter periods can
result in better predictions and such a pattern is feasible in the online gaming setting, however for
esports, especially in the case of large tournaments, it is often not practical to keep track of all results
in real time and incorporate them into live predictions.
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6 Future Work and Conclusion

There is an expansive range of extensions to and experiments using these datasets ripe for future
work. An obvious direction for future work inspired by the strong performance of the Glicko models
would be the extension of the update functions of other rating system to doing batched updates over
all matches in a rating period at once. Additionally the impact of rating period length warrants further
investigation. In this work we elected to perform a simple sampling based approach to hyperparameter
tuning, future work should investigate more sophisticated methods such Bayesian optimization or the
direct optimization demonstrated in Ingram (2021).

Additional fields can also be collected such as in-game statistics, competitor ages, and nationalities in
order to compare with methods which incorporate features beyond the outcome such as Minka et al.
(2018). Score data is available for the majority of the matches in the EsportsBench datasets allowing
for further investigation into methods leveraging margin of victory (Kovalchik, 2020; Ingram, 2021).
For team based competitions, data for the players on each team could be added in order to evaluate the
gain methods designed for team competitions such as Herbrich et al. (2006); Weng and Lin (2011);
Ebtekar and Liu (2021) bring over the team level modeling. There are esports events of all sorts
practically every day, this means that there is a steady stream of new data which can be collected and
released allowing for the potential development of EsportsBench into a dynamic or near-real-time
leaderboard.

In this work we introduce EsportsBench, a diverse suite of 20 esports competition datasets for
benchmarking rating systems. We outline a framework for rating systems experiments including
setup, hyperparameter tuning, model parameter fitting, and evaluation. Our experimental findings
from comparing 11 rating systems on the 20 datasets provide a foundational baseline upon which
further experiments can extend and improve.
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A Game Info

Table 3 provides additional information about the games, including their genre, competition format
and whether the dataset is comprised of multiple games in a series.

Table 3: Information about the each game
Game Genre Competition Format Series

StarCraft I real time strategy individual
StarCraft II real time strategy individual
WarCraft III real time strategy individual
Super Smash Bros. Melee fighting individual
Super Smash Bros. Ultimate fighting individual
Tekken fighting individual ✓
Street Fighter fighting individual ✓
King of Fighters fighting individual ✓
Guilty Gear fighting individual ✓
Tetris arcade individual
FIFA sports individual ✓
Rocket League sports team (3 players)
DotA 2 multiplayer online battle arena team (5 players)
League of Legends multiplayer online battle arena team (5 players)
Counter-Strike shooting team (5 players) ✓
Call of Duty shooting team (4 or 5 players) ✓
Halo shooting team (4 players) ✓
Overwatch shooting team (5 or 6 players) ✓
Valorant shooting team (5 players)
Rainbow Six: Siege shooting team (5 players)

B Dataset Distributions

To better understand the makeup of the datasets, Tables 1 and 2 visualize the number of matches per
year, and per competitor in each of the datasets. The distributions per year highlight many interesting
patterns. Several datasets begin very flat and then gave steep rises for example King of Fighters and
Halo, while one might think this is strictly representative of popularity, it is much more an artifact of
how online record keeping for esports results has drastically improved over time. It is important to
keep in mind that the data availability is not uniform through time in these datasets which may have
consequences on which rating systems are the best. Both this detail and the power law competitor
match frequency are examples of how different esports data is from sports data in which leagues
often operate in a set schedule where each team plays the same number of game in the same amount
of time.

Another interesting artifact visible from the matches per year charts is the impact of the COVID
19 pandemic on different games. For games like Smash Brothers, where there are large grassroots
in-person , 2020 and 2021 were notable drops compared to 2019. Conversely in Rocket League
and WarCraft 3, there was a movement towards hosting more online tournaments, and the lower
production costs allowed there to be more events and matches total.

C Hyperparameters

Below is a full accounting of all hyperparameters for all rating systems and the ranges the broad
hyperparameter sweep ran over. Note we do not consider the initial rating or mean hyperparameter
since the considered methods are all sensitive only to the difference in ratings not their values. Note
that some different hyperparameters share the same symbols when used in different rating systems,
we are following the original authors’ notations which sometimes overlap. As there are optimal values
for each hyperparameter, dataset combination, we publish the optimal value configurations in the
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Name Rating Systems Description Values
k Elo magnitude of update [3.2, 320]
RD Glicko, Glicko2 initial rating deviation [10, 1000]
c Glicko per time unit variance increase [0.01, 100.0]
σ Glicko2 initial per competitor volatility [0.006, 0.6]
τ Glicko2 volatility update constraint [0.12, 1.2]
σ TrueSkill, W&L initial standard deviation [0.8333, 83.33]
β TrueSkill, W&L rating difference implying 80% win prob [0.4166, 41.66]
τ TrueSkill, W&L per game variance increase [0.00833, 0.833]
v0 vSKF initial variance [1e-6, 10]
β vSKF rating decay rate [0.9, 1]
s vSKF scale, similar to the factor of log(10)/400 in Elo [0.1, 10]
ϵ vSKF per time unit variance increase [1e-3, 0.1]
κ W&L minimum variance [1e-5, 1e-3]
k mElo dimension of strategy vectors 1, 5, 10
ηr mElo magnitude of rating update [1, 160]
ηc mElo magnitude of strategy vector update [0.01, 1]
σ2 vElo initial variance [1.0e-6, 10]
A vElo variance reduction factor [1.0e-6, 1]
B vElo minimum variance [1.0e-6, 10]
b vElo scale, similar to the factor of log(10)/400 in Elo [1.0e-6, 10]
σ GenElo shared constant standard deviation [6, 600]

Table 4: Hyperparameter values, descriptions, and sweep ranges.

github repo at https://github.com/cthorrez/esports-bench/tree/main/esportsbench/
experiments/sweep_results.
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(a) StarCraft I (b) StarCraft II

(c) WarCraft III (d) Super Smash Bros. Melee

(e) Super Smash Bros. Ultimate (f) Tekken

(g) Street Fighter (h) King of Fighters

(i) Guilty Gear (j) Tetris

Figure 1: Number of matches per year for each game (1 of 2)
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(k) FIFA (l) Rocket League

(m) Dota 2 (n) League of Legends

(o) Counter-Strike (p) Call of Duty

(q) Halo (r) Overwatch

(s) VALORANT (t) Rainbow Six: Siege

Figure 1: Number of matches per year for each game (2 of 2)
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(a) StarCraft I (b) StarCraft II

(c) WarCraft III (d) Super Smash Bros. Melee

(e) Super Smash Bros. Ultimate (f) Tekken

(g) Street Fighter (h) King of Fighters

(i) Guilty Gear (j) Tetris

Figure 2: Frequency of matches per competitor in log scale (1 of 2)
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(k) FIFA (l) Rocket League

(m) Dota 2 (n) League of Legends

(o) Counter-Strike (p) Call of Duty

(q) Halo (r) Overwatch

(s) VALORANT (t) Rainbow Six: Siege

Figure 2: Frequency of matches per competitor in log scale (2 of 2)
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